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I Model Implied Price Paths

I.I Simulation Results

This section presents simulation results for the price path implied by the model for the case

where λt ≡ 1, and for a more general case of λt increasing in t. The latter case corresponds

to the representative agent gradually revising upward her initial expectation about the size

of the program.

We simulate the model for two stocks available in equal supply Q = (10, 10)′. We set the

variance of dividend innovations to σ = 0.0075 for both stocks and we assume a correlation

coefficient of ρ = 0.25. The asset purchase program of the central bank is announced at

t = 1 with total asset purchases corresponding to Mq = (2, 0.5)′, with M = 120. Under these

assumptions, the model predicts an aggregate policy price impact π = (0.0159, 0.0075) by the

end of the policy horizon.

In general, the effect of the policy can be decomposed into two components: the initial price

jump and the subsequent drift. The relative magnitude of these two components depends on

the choices of the risk-free rate and the dynamics of λt.

When λt ≡ 1, the relative importance of these two components depends only on the risk free

rate. The higher the risk free, the smaller the initial jump and the more pronounced the drift.

This can be seen in Figure I, which plots model implied price paths for different choices of

the risk free rate.

∗Andrea Barbon (andrea.barbon@usi.ch) and Virginia Gianinazzi (virginia.gianinazzi@usi.ch) are with USI

Lugano and the Swiss Finance Institute. All errors are our own.
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Figure I: Simulation results for constant beliefs and different values of the risk free rate. This

figure plots cumulative returns around the policy announcement from model simulations at different values of

the risk free rate and for λt = 1 ∀t. From the top-left to bottom-right panels, the annual risk free rate is set at

1%, 5%, 10% and 30% to show how this affects the magnitude of the event jump and of the post-event drift.

We then simulate the model for different time paths of investors beliefs about the size of the

purchase program, parametrized by a family of logistic functions:

B̃ = − log(1/B − 1), λt =
1

1 + exp(−B̃ − St)

where B and S parametrize two key characteristics of the beliefs dynamics. Notice that this

parametrization implies λt ∈ (0, 1), since we want to restrict to belief dynamics corresponding

to an under-reaction to the policy announcement. B represents the magnitude of the initial

under-reaction and S controls the speed with which the representative agent updates this

probability as the program is carried out. Panel A of Figure II plots the dynamics of λ for

different choices of the parameters B and S. Panel B plots the simulated price path for the

corresponding parameter choice. We see that the bottom left panel produces the combination

of jump and drift that is closer to what we observe in the data.

I.II Magnitude of Residual Duration: Analytical Proof

Figure I shows that for realistic values of the risk free rate (less than 5% annually) the drift

component is negligible, i.e. it is at least one order of magnitude smaller than the price change

on the event day. Intuitively, when discount rates are low the timing of purchases matters

2



less and announced purchases in the future are impounded into prices as soon as they are

announced. The following Proposition 1 proves this analytically.

Proposition 1. Assume λt = 1 ∀t. For sufficiently small values of the risk-free rate, the

post-event price adjustments are at least one order of magnitude smaller than the initial price

jump at the announcement day.

Proof. Recall equations (11) and (12), describing the price jump at the announcement and

the subsequent price adjustments, respectively

p1 − p0 =
1

r
(ε1 + γV (Mq − ϕ(1)q)) (i)

pt+1 − pt =
1

r
(εt+1 − γV (ϕ(t+ 1)− ϕ(t))q) , t = 1, . . . M (ii)

where M ∈ N is the duration of the program and ϕ(t), defined by

ϕ(t) =
r

1 + r

M−t−1∑
i=0

(M − t− i)
(1 + r)i

(iii)

is a non-stochastic function of time representing the residual duration of the announced

purchases. The price jump component is thus proportional to M−ϕ(1), while the subsequent

adjustments are proportional to ϕ(t) − ϕ(t + 1) for t = 1, . . . ,M . Choose a natural number

k > 0 such that the risk-free rate r is bounded by (kM − 1)−1. This is equivalent to

r <
1

kM − 1
⇐⇒ kMr < r + 1 (iv)

⇐⇒ kM2 r

1 + r
< M (v)

Notice that the definition of ϕ(t) immediately implies that

ϕ(1) < ϕ(t) ∀t > 1 (vi)

and

ϕ(1) =
r

1 + r

M−2∑
i=0

M − 1− i
(1 + r)i

<
r

1 + r
M2 (vii)

therefore we conclude that for r < (kM − 1)−1 we have

kϕ(t) < kϕ(1) < kM2 r

1 + r
< M (viii)

The definition of ϕ also implies that ϕ(t)−ϕ(t+1) < ϕ(1) for t = 1, . . . ,M , so using equation

(viii) we find

ϕ(1) + ϕ(t)− ϕ(t+ 1) < 2ϕ(1) <
2M

k
(ix)

3



which in turn implies that

ϕ(t)− ϕ(t+ 1) <
2M

k
− ϕ(1) <

2

k
(M − ϕ(1)) (x)

Hence k = 20 is enough to ensure that the post-event price adjustments are at least an order

of magnitude smaller than the initial price jump.

Numerically, assuming a duration of the policy of 2 years (M = 504), the bound r < (kM−1)−1

for k = 20 amounts to the requirement that r < 0.0001, corresponding to an annual risk-free

rate of 2.5%. This requirement is widely satisfied during our sample period, characterized by

interest rates at or below zero.

II Relaxing Market Segmentation

In Section 5.4 we use the portfolio balance effect estimated from cross-sectional regressions

to derive an estimate of the aggregate effect at the market-level. As we explain, this back-of-

the-envelope calculation is derived under the assumption that the representative agent invests

the proceedings from the sale of the ETF shares at the constant risk-free rate. In this section

we relax this assumption and we investigate how this impacts our estimate of the aggregate

portfolio balance effect and thus of the demand elasticity.

Consider an extension of the model described in Section 3 that includes a non-Japanese equity

security S into which the representative agent re-invests a fraction F ∈ [0, 1] of the proceeds

from the sale of the stocks. Let σS be the variance of S and η be the n-dimensional vector

of covariances of this security with the stocks in the market. The entries of η are therefore

given by

ηi = σSσiρi, i = 1, . . . , n (xi)

where the subscript i indicates a stock in the Japanese equity market. For simplicity we

normalize the quantity bought by the central bank to one, i.e.
∑

i ui = 1.

From our theoretical framework it follows that the expected impact of the asset purchase

program on stock returns is proportional to1

1When we write it in this way, equation (xii) slightly abuses the notation of the model since, if we interpret

it literally, F stands for a change in the quantity of security S available to the market, just as u represent

the change in the quantity of stocks induced by the purchase program. This leads to inconsistent predictions

about the policy impact on the price of security S, but creates no issues for what we want to do here, namely

to derive the implications of the reinvestment in security S for the impact on equity prices. To recover internal

consistency, suppose that, instead of exchanging equities for cash, the central banks issues a claim S with the

properties described above.
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(
Σ η

η σ2S

)(
u

−F

)
=

(
Σu− Fη
η′u− Fσ2S

)
=

(
π − Fη

η′u− Fσ2S

)
∼=

(
π∗

πnon−equity

)
(xii)

Equation (xii) shows that the aggregate effect of the policy on the equity market should be

computed as a function of π∗ = π − Fη, yielding

R̂ = β
∑
i

ωiπ
∗
i (xiii)

where we suppress the subscript H in the notation. It is easy to see that π∗ = π if and only if

the new asset S has zero correlation with all the stocks or the re-invested fraction F is equal

to zero.

We now derive the implications of wrongly assuming F = 0. Let the theoretical data gener-

ating process of stock returns be given by

Ri = βπ∗i + εi (xiv)

In Section 5.4 we estimate β from the following regression of returns on π

Ri = βπ + ei (xv)

from which we obtain

β̂ =
Cov(R, π)

Var(π)
=

Cov(βπ∗ + ε, π)

Var(π)
= β

Cov(π∗, π)

Var(π)
= β

(
1− Cov(η, π)

Var(π)

)
(xvi)

We then use the estimated β̂ to derive the aggregate effect

ŷ = β̂
∑
i

ωiπi (xvii)

Failing to account for the potential re-investment into the new asset S affects our estimate of

the aggregate effect both directly through π 6= π∗ as well as indirectly through the estimate

of β̂ 6= β. More precisely, the bias in our estimate is given by

ŷ − y = β̂
∑
i

ωiπi − β
∑
i

ωiπ
∗
i (xviii)

= β

(∑
i

wi

(
Fηi −

Cov(η, π)

Var(π)
πi

))
(xix)

From the above expression it can be shown that the magnitude of the bias depends on (i)

the covariance between η and π, (ii) the vector of market weights w and (iii) the degree of
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market segmentation 1 − F . Because the vector η depends on the unobservable asset S, w

has a specific empirical shape and F is unknown, the sign and magnitude of the bias cannot

be determined in general from a theoretical argument.

We thus run simulations for different values of F to numerically estimate the likely direction

and magnitude of the bias. In a first set of simulations we assume the asset S to be the S&P

500. In a second exercise we explore how the degree and direction of the bias depends on the

replacement asset, considering Japanese and US Government Bonds as alternatives.

Each simulation iteration for a fixed F follows the following procedure:

1. Compute η as the covariance between each stock and the replacement asset, using daily

returns from a 2-years window ending ten days before the BOJ announcement.

2. Compute π∗ = π − η(
∑

i ui)F , where π is the vector used in our empirical analysis

3. Simulate stock returns as Ri = β∗π∗i + εi, where the true β∗ is a random number in the

interval [10, 50] and the noise terms εi are sampled from the error terms of our baseline

cross-sectional regression of Section 5.

4. Estimate β̂ from the regression Ri = βπi + ei

5. Compute the estimated aggregate effect ŷ and the true one y as

ŷ = β̂
∑
i

wiπi and y = β∗
∑
i

wiπ
∗
i (xx)

6. Compute the bias as a percentage of the real effect

Bias =
ŷ − y
| y |

× 100 (xxi)

The results from the first set of simulations, summarized in Table I, show that our method-

ology is likely to over-estimate the real aggregate effect of the policy. As expected, the

magnitude of the bias decrease monotonically with the the degree of market segmentation

1 − F and converges to zero in the case of complete market segmentation (F = 0). Impor-

tantly we notice that the magnitude of the bias is reasonably small, averaging to at most 10%

relative to the real magnitude of the effect. These results suggest that, assuming investors are

using the S&P 500 as replacement asset, our methodology can be considered as a reasonably

tight upper bound for the true effect of the policy.

In the second round of simulations we assume full re-investment of the proceedings from the

BOJ purchases, i.e we fix the fraction of re-invested capital to be F ≡ 1, but we consider

alternative replacement assets. We take into consideration (i) 10-years Japanese Government

Bonds (JGB) and (ii) 10-years US Treasuries. Results, reported in Table I, show that the
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Panel A: Different fraction of re-invested capital (S = S&P500)

Fraction of cash re-invested Real Beta on π Estimated Beta on π Estimation Error

25% 30.14 31.03 3.01 %

50% 30.00 31.79 6.14 %

75% 29.87 32.54 9.19 %

100% 30.34 33.97 12.22 %

Panel B: Different re-investment assets (F = 1)

Replacement Asset Real Beta on π Estimated Beta on π Estimation Error

JGB 29.69 26.18 -12.69 %

USB 30.69 29.53 -2.35 %

S&P 30.34 33.97 12.22 %

Table I: Impact of the market segmentation assumption. The table reports the impact of different

assumptions about how the agent reinvests the proceeds from the sale of the stocks to the central bank on

the estimated aggregate effects of the policy. Results are derived from simulations of the extended version of

the model that we derive in Appendix II. Panel A reports results derived under the assumption that agents

reinvest the proceeds in the S&P500 for different values of F , the fraction of cash re-invested. Panel B assumes

F = 1 and derives the estimation error for different choices of the reinvestment asset S, namely Japanese

government bonds (JGB) and US Treasuries.

direction of the estimation bias is the opposite when taking bonds as the replacement asset.

When S is assumed to be JGBs, the our methodology is under-estimating the effect of the

policy. This is consistent with the intuition that government bonds serve as a good hedging

for an equity investors. Hence, taking the hypothetical rebalancing toward bonds into account

uncovers a more pronounced portfolio balancing effect.

A similar conclusion applies to the case in which S represents US treasuries. The degree of

under-estimation is lower though, consistent with the intuition that US treasuries are less

effective as a hedge relative to their Japanese counterparts.
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Panel A: Functional forms for λ
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Panel B: Simulated Price Paths
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Figure II: Simulation results for time-varying beliefs. This figure presents simulated price paths under

different assumptions of investors’ beliefs about the size of the program. Panel A plots the time dynamics

of the function λ for different choices of the parameters B and S of the logistic function. Panel B presents

simulation results. The annual risk free rate is set at 5%.

8



III Additional Figures and Tables
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Figure III: Portfolio Balance Effect across Industries This figure shows the estimated portfolio balance

impact of the policy, expressed in basis points per trillion Yen, computed separately for each sector.
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Mkt Cap (Bn U) Mkt Beta Forex Beta Mkt Leverage (%) Market to Book

Mean SD Med Mean SD Med Mean SD Med Mean SD Med Mean SD Med

As of 2013:

High π 808.4 1643.5 297.8 1.04 0.24 1.03 0.00 0.12 -0.01 26.4 22.4 21.6 1.2 0.5 1.1

Medium-high π 118.3 195.4 53.2 0.79 0.27 0.78 -0.03 0.11 -0.04 24.1 22.8 17.2 1.2 2.0 1.0

Medium-low π 46.3 69.7 25.4 0.75 0.31 0.72 -0.06 0.14 -0.07 25.9 23.3 20.0 1.1 0.8 1.0

Low π 30.8 55.7 17.7 0.90 0.32 0.90 -0.07 0.16 -0.06 25.7 22.6 21.1 1.4 1.3 1.0

As of 2015:

High π 943.1 1822.3 391.3 1.00 0.18 1.01 0.00 0.13 -0.01 23.9 22.7 18.1 1.4 0.9 1.1

Medium-high π 134.8 219.2 53.7 0.84 0.22 0.85 -0.04 0.12 -0.05 23.3 22.6 17.9 1.2 0.8 1.0

Medium-low π 66.2 110.1 30.0 0.81 0.23 0.82 -0.05 0.14 -0.06 24.5 22.6 18.2 1.2 0.9 1.0

Low π 44.6 58.9 22.7 0.89 0.22 0.89 -0.05 0.17 -0.05 24.1 22.0 18.2 1.5 1.3 1.1

Table II: Summary Statistics by π-quartile. Market beta and Forex beta are estimated as explained in the main text. Market leverage is defined as

(DLTT + DLC) / (DLTT + DLC + Market Cap). Market to book is the ratio of market assets to book assets and is computed as (LT + PSTK - TXDITC

+ Market Cap) / AT. Variables indicated with capital letters are from Compustat Global. Market capitalization is from Bloomberg.
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Abnormal Returns 2014 Abnormal Returns 2016

H (days) 5 10 21 63 126 252 5 10 21 63 126 252

π 11.06** 30.60*** 22.51** 63.85*** 152.1*** 275.0*** 15.52** 16.69** 30.48*** 34.18** 82.20*** 110.4***

(2.11) (4.62) (2.52) (4.34) (8.50) (10.32) (2.96) (2.52) (3.42) (2.32) (4.60) (4.14)

u -0.00 -0.02*** -0.01 -0.02*** -0.02 -0.04* 0.010* 0.004 0.024** 0.014 0.045** 0.102***

(-0.39) (-3.20) (-1.30) (-2.52) (-1.65) (-1.99) (2.06) (0.67) (2.55) (1.35) (2.91) (4.70)

Mkt Beta -0.04* -0.07* -0.08* -0.17** -0.32** -0.45*** 0.016 -0.01 0.009 0.012 0.007 0.041

(-1.47) (-1.97) (-1.70) (-2.32) (-2.22) (-2.68) (0.59) (-0.26) (0.19) (0.16) (0.05) (0.24)

Forex Beta 0.039** 0.041** 0.095*** 0.087** 0.019 -0.12 -0.00 0.014 0.053** 0.049 0.190*** 0.166

(2.81) (2.32) (4.11) (2.26) (0.30) (-0.03) (-0.48) (0.80) (2.32) (1.28) (2.92) (0.04)

log(Mkt Cap) 0.002 0.006 0.001 -0.00 0.005 -0.00 -0.00 -0.00 -0.01 -0.02 -0.06*** -0.10***

(0.63) (1.16) (0.22) (-0.07) (0.26) (-0.72) (-1.40) (-0.49) (-1.60) (-1.70) (-3.43) (-8.54)

Amihud 0.000 4.618 0.001 0.000 0.019*** 0.005 0.000 0.000 -0.00 -0.00 -0.00** -0.01***

(0.66) (0.03) (0.75) (0.36) (7.19) (1.67) (0.18) (0.11) (-0.59) (-1.31) (-3.23) (-3.11)

Obs 1,701 1,701 1,701 1,701 1,701 1,701 1,734 1,734 1,734 1,734 1,734 1,734

R-squared 0.114 0.160 0.102 0.120 0.180 0.141 0.071 0.050 0.101 0.111 0.203 0.191

Industry FE YES YES YES YES YES YES YES YES YES YES YES YES

Table III: Cross-sectional regressions with industry fixed effects. The table reports the coefficients of cross-sectional regressions of cumulative

returns (in percentage points) computed at different horizons on the predicted price impact π and a set of control variables (standardized). In this specification

we include industry fixed effects, based on the first 3 digits of the Standard Industry Classification Code (SIC-3). Regressions are run separately for the

two events. The dependent variable is the cumulative abnormal return with respect to the market model estimated in the pre-event window. t-statistics

from placebo regressions are in parenthesis; asterisks denote conventional significance levels (***=1%, **=5%, *=10%) based on empirical p-values.
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Abnormal Returns 2014 Abnormal Returns 2016

H (days) 5 10 21 63 126 252 5 10 21 63 126 252

π 19.04*** 42.17*** 28.77*** 72.38*** 172.5*** 300.7*** 17.61** 17.34* 31.88*** 38.51** 87.69*** 112.9***

(3.22) (5.69) (2.86) (4.57) (9.25) (11.60) (2.98) (2.34) (3.16) (2.43) (4.70) (4.36)

u 0.008* -0.00 -0.00 -0.03*** -0.03** -0.11*** 0.014*** 0.001 -0.00 -0.02* -0.04** 0.001

(1.90) (-1.32) (-0.97) (-3.44) (-2.06) (-4.64) (3.28) (0.27) (-0.24) (-2.15) (-2.47) (0.07)

Mkt Beta -0.02 -0.05 -0.07 -0.16* -0.29** -0.40*** 0.026 0.002 0.027 0.028 0.048 0.076

(-0.84) (-1.48) (-1.37) (-2.06) (-2.05) (-2.14) (0.86) (0.07) (0.51) (0.36) (0.33) (0.41)

Forex Beta 0.037** 0.042* 0.102*** 0.097** 0.043 -0.13 -0.00 0.018 0.053* 0.060 0.196*** 0.186***

(2.20) (2.02) (3.81) (2.28) (0.61) (-1.72) (-0.18) (0.90) (2.00) (1.43) (2.73) (2.33)

log(Mkkt Cap) 0.001 0.006 0.001 0.001 0.005 -0.00 -0.00 -0.00 -0.01* -0.03 -0.07*** -0.11***

(0.33) (0.94) (0.16) (0.06) (0.24) (-0.33) (-1.48) (-0.55) (-1.80) (-1.79) (-3.58) (-7.59)

Amihud 0.001 0.000 4.552 0.001 0.016*** 0.018*** 0.000 0.000 -0.00 -0.00 -0.00** -0.00

(0.79) (0.25) (0.00) (0.67) (6.13) (7.14) (0.48) (0.39) (-0.53) (-0.96) (-3.27) (-2.45)

Nikkei -0.01 -0.02* -0.00 -0.00 -0.00 0.048* -0.00 0.003 0.038* 0.049* 0.122*** 0.153***

(-1.26) (-1.72) (-0.27) (-0.08) (-0.18) (1.54) (-0.38) (0.24) (2.23) (2.32) (4.03) (4.88)

Obs 1,807 1,807 1,807 1,807 1,807 1,807 1,839 1,839 1,839 1,839 1,839 1,839

R-squared 0.06 0.11 0.07 0.10 0.15 0.12 0.05 0.03 0.08 0.08 0.19 0.15

Industry FE NO NO NO NO NO NO NO NO NO NO NO NO

Table IV: Cross-sectional regressions controlling for Nikkei. The table reports the coefficients of cross-sectional regressions of cumulative returns

(in percentage points) computed at different horizons on the predicted price impact π and a set of control variables (standardized). In this specification we

add a dummy variable Nikkei that indicates stocks belonging to the Nikkei 225 Index. Regressions are run separately for the two events. The dependent

variable is the cumulative abnormal return with respect to the market model estimated in the pre-event window. t-statistics from placebo regressions are

in parenthesis; asterisks denote conventional significance levels (***=1%, **=5%, *=10%) based on empirical p-values.
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Abnormal Returns 2014 Abnormal Returns 2016

H (days) 5 10 21 63 126 252 5 10 21 63 126 252

π 12.21** 32.64*** 22.95** 63.97*** 150.7*** 266.7*** 15.62** 16.37** 28.39** 31.48** 75.75*** 102.7***

(2.28) (4.80) (2.51) (4.38) (8.72) (10.01) (2.91) (2.41) (3.11) (2.16) (4.38) (3.86)

u 0.006 -0.00 -0.00 -0.02*** -0.03** -0.10*** 0.012** 0.000 -0.00 -0.02* -0.04** -0.00

(1.35) (-1.41) (-1.16) (-2.89) (-2.32) (-4.28) (2.72) (0.05) (-0.56) (-2.42) (-2.95) (-0.21)

Mkt Beta -0.04* -0.07* -0.08* -0.17** -0.33** -0.46*** 0.016 -0.00 0.011 0.015 0.014 0.050

(-1.48) (-1.98) (-1.71) (-2.38) (-2.23) (-2.28) (0.59) (-0.25) (0.24) (0.21) (0.10) (0.25)

Forex Beta 0.040** 0.043** 0.095*** 0.087** 0.018 -0.12*** -0.00 0.012 0.044* 0.038 0.163** 0.134***

(2.83) (2.38) (4.11) (2.25) (0.28) (-1.93) (-0.45) (0.71) (1.93) (0.98) (2.49) (2.01)

log(Mkt Cap) 0.002 0.006 0.001 -0.00 0.004 -0.00 -0.00 -0.00 -0.01 -0.02 -0.06*** -0.10***

(0.61) (1.09) (0.21) (-0.07) (0.24) (-0.81) (-1.29) (-0.48) (-1.61) (-1.69) (-3.43) (-9.10)

Amihud 0.001 0.000 0.001 0.000 0.019*** 0.005 0.000 0.000 -0.00 -0.00 -0.00** -0.01***

(0.67) (0.06) (0.70) (0.34) (6.97) (1.52) (0.18) (0.09) (-0.64) (-1.32) (-3.33) (-3.15)

Nikkei -0.01 -0.01 -0.00 -0.00 0.011 0.074*** -0.00 0.006 0.039* 0.050* 0.120*** 0.143***

(-1.04) (-1.39) (-0.22) (-0.05) (0.36) (2.15) (-0.17) (0.46) (2.24) (2.29) (3.62) (4.17)

Obs 1,701 1,701 1,701 1,701 1,701 1,701 1,734 1,734 1,734 1,734 1,734 1,734

R-squared 0.12 0.16 0.10 0.12 0.18 0.14 0.07 0.05 0.11 0.12 0.21 0.20

Industry FE YES YES YES YES YES YES YES YES YES YES YES YES

Table V: Cross-sectional regressions controlling for Nikkei and industry. The table reports the coefficients of cross-sectional regressions of

cumulative returns (in percentage points) computed at different horizons on the predicted price impact π and a set of control variables (standardized). In

this specification we add a dummy variable Nikkei that indicates stocks belonging to the Nikkei 225 Index and industry fixed effects based on the first 3

digits of the Standard Industry Classification Code (SIC-3). Regressions are run separately for the two events. The dependent variable is the cumulative

abnormal return with respect to the market model estimated in the pre-event window. t-statistics from placebo regressions are in parenthesis; asterisks

denote conventional significance levels (***=1%, **=5%, *=10%) based on empirical p-values.
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